

2025 Ornamental IPM Program Webinar

Contemporary IPM Topics and Management April 22, 2025

Bill Errickson & Steve Rettke (Monmouth)

Tim Waller (Cumberland)

Support: Erin Quinn

Cooperating Agencies: Rutgers, The State University of New Jersey, U.S. Department of Agriculture, and Boards of County Commissioners, Rutgers Cooperative Extension, a unit of the Rutgers New Jersey Agricultural Experiment Station, is an equal opportunity program provider and employer.

TODAYS SPEAKERS

Bill Errickson (Ag. Agent - Monmouth County RCE)

Steve Rettke (IPM Program Associate – Monmouth County RCE)

Tim Waller (Ag. Agent – Cumberland County RCE)

Erin Quinn (IPM Program support)

Disclaimer - Materials do not cover all possible control scenarios and are intended for licensed professionals. Tradenames do not imply endorsement and are used as examples. You must strictly follow the label for each compound prior to use. Rutgers is not responsible for misused materials or damages thereof. The label is the law. Labels will provide detailed information on use and restrictions. Additionally, application intervals, compatibility, surfactant use, PHI, PPE, important and other key information is described in detail. Always discuss treatments with your local agents. Note: Neonicotinoids can only be legally applied in commercial agriculture settings by licensed applicators.

Updates

Miticide materials clarification:

- Oils/Soaps/Neem Oil Ο
- Hexythiazox MGR Ο
- Etoxazole MGR Ο
- Spiromesifen Ο
- **Bifenazate** Ο
- Acequinocyl Ο
- Abamectin Ο
- **Pyrethroids** Ο
 - Lambda-cyhalothrin
 - Fluvalinate
 - **Bifenthrin**

Projected GDD50 accumulation as of 4/21/2025 (April-MAY)							
CODE	Location	21-Apr	28-Apr	5-May	12-May	19-May	26-May
NJ50	Upper Deerfield (South)	147	232	305	392	489	603
NJ10	Howell (Central)	106	173	226	292	369	464
N79	Wantage (North)	67	114	150	202	264	345
USPEST.ORG - Model: simple average/growing degree-day , Min: 50F - Max: 95F, NMME forecast							

Forecast: 7-month NMME based seasonal climate forecast (USPEST.ORG) - Subject to change regularly = Check Often

U.S. Drought Monitor

Sourco(c): NDMC NOAA LISDA

Droi	ight & Dryness Categories	% of Sussex County
	D0 - Abnormally Dry	0.01%
	D1 – Moderate Drought	62.44%
	D2 – Severe Drought	37.55%
	D3 – Extreme Drought	0%
	D4 – Exceptional Drought	0%
	Total Area in Drought (D1–D4)	99.99%

Replenishing precipitationdeficit

Boxwood blight

Boxwood Blight Risk MODEL

	5	SOUTH		CEN	TRAL	NORTH				
Station NJ50, UPPER DEERFIELD NJ, 2025			Station N	J10, HOW	'ELL NJ, 2025	Station NJ79, WANTAGE NJ, 2025				
2025					2025	2025				
Date	Risk index	Risk class	Date	Risk index	Risk class	Date	Risk index	Risk class		
Apr 21	0	Very Low Risk	Apr 21	14	Very Low Risk	Apr 21	0	Very Low Risk		
Apr 22	169	1st Infec. Susc. Vars.	Apr 22	145	Low Risk	Apr 22	92	Low Risk		
Apr 23	0	Very Low Risk	Apr 23	0	Very Low Risk	Apr 23	0	Very Low Risk		
Apr 24	0	Very Low Risk	Apr 24	0	Very Low Risk	Apr 24	0	Very Low Risk		
Apr 25	54	Very Low Risk	Apr 25	0	Very Low Risk	Apr 25	0	Very Low Risk		
Apr 26	117	Low Risk	Apr 26	76	Low Risk	Apr 26	0	Very Low Risk		

Fungicides applied at regular intervals

- [M05]: Chlorothalonil
- [M05 + 1] Chlorothalonil + Thiophanate methyl [1]
- [11] Trifloxystrobin + [7] Fluopyram
- [11] Trifloxystrobin + [3] Triadimefon

- [M03] Mancozeb
- [12] Fludioxonil
- [3] Tebuconazole

Ambrosia beetle (Xylosandrus)

Adult flight triggered by successive 70F days Avoid transporting infested plants Reduce plant stress

Contact insecticides:

Systemics don't work

HIGHLY LIKELY

Pyrethroids [3]: permethrin, bifenthrin

 Spray on lower stems before peak beetle flight

Agenda

- 1. Boxwood leafminer
- 2. Holly leafminer
- 3. Eastern tent caterpillars
- 4. Evergreen lace bugs
 - \circ Andromeda lace bug
 - \circ Azalea lace bug

- 5. Clearwing borers
 - Lilac clearwing borer
 - Dogwood clearwing borer
- 6. Spongy moth
- 7. Red-headed flea beetle
- 8. Fire blight
- 9. Rust diseases

Boxwood leafminer (Monarthropalpus flavus)

GDD Window (base 50): 290+ (adult emergence), 448-700 (larvae emergence)

- Overwinters in the leaves as larvae
- Larvae are bright yellow or orange and become active in spring, feeding on leaves from the inside, creating yellow or brown blisters which become clear as larvae grows, making the leaf swell and look puffy
- Heavily infested leaves sound like they're crackling
- Blistered leaves weaken the plant and cause leaf drop, plants appear sparse
- Gnat-looking adults emerge by early summer and are yellow-orange in color, leaving behind a pinprick-sides hole in the underside of the leaf
- Females lay eggs on upper surface of new leaves
- Eggs hatch and larvae mine leaves throughout summer
- One generation per year
- Host plants: Boxwoods

Photo via Steve Rettke, Rutgers RCE

Current GDD: <u>4/22/25</u> North NJ: 60 GDDs Central NJ: 120 GDDs Southern NJ: 165 GDDs

TRAPS AVAILABLE

Photo credits Steve Rettke, Rutgers RCE

Boxwood leafminer (Monarthropalpus flavus)

RUTGERS

Boxwood leafminer (Monarthropalpus flavus)

GDD Window (base 50): 290+ (adult emergence), 448-700 (larvae emergence)

Management

- **Cultural Practices:**
 - Natural predators: lacewings, ladybugs, hover-flies, parasitic wasps, spiders, birds
 - Companion plantings: lavender, marigolds
 - Monitor throughout the season, sticky traps
 - Reduce plant stress
 - o Choose resistant varieties
 - o Manually crush insects
 - Heavy pruning for first-year growth after egg-laying in early summer
 - Destroy clippings

Materials

- \circ $\,$ Contact insecticides:
 - Avermectins [6]: abamectin
 - Pyrethroids [3]: -thrins
 - Carbamates [1A]: carbaryl
- Systemic insecticides:
 - -Organophosphates [1B]: acephate (translaminar);

-Neonicotinoids [4A]:

imidacloprid, dinotefuran, clothianidin,

acetamiprid

- Considerations:
 - Contact insecticide application must be timed with the emergence of adult flies

Biorationals:

- o Insecticidal soap
- o Horticultural oils
- Insect growth regulator:
 - Pyridayl [UN]: azadirachtin
- Spinosyns [5]: spinosad

TRAPS AVAILABLE

Holly leafminer (Phytomyza ilicicola)

GDD Window (base 50): 147-265

- Overwinter as yellow larvae, 1.5 mm long
- Eggs hatch into tiny maggots within the leaf mine, causing the most damage in early spring
- Adults are small, 0.8-1.6 mm long black flies
- Maggots pupate in the spring
- Adults emerge from leaves in May, mate, and female deposits eggs in slits on the underside of new leaves
- One generation per year
- Mines are narrow in the fall but expand during the spring, causing leaves to have yellow serpentine or blotch mines
- Causes premature leaf drop, defoliation, leaf growth stunting and distortion
- Host plants: American holly and cultivars

Photo: Charlie Eiseman via BugGuide

Current GDD: <u>4/22/25</u> North NJ: 60 GDDs Central NJ: 120 GDDs Southern NJ: 165 GDDs

TRAPS AVAILABLE

Holly leafminer (Phytomyza ilicicola)

Photo: Steve Rettke, Rutgers RCE

Photo: Lynn Harper via iNaturalist

Photo: UGA Extension

RUTGERS

TRAPS AVAILABLE

Current GDD: <u>4/22/25</u> North NJ: 60 GDDs Central NJ: 120 GDDs Southern NJ: 165 GDDs

Photo: UGA Extension

 Photo: Steve Rettke, Rutgers RCE

Holly leafminer (Phytomyza ilicicola)

GDD Window (base 50): 147-265

Management

- **Cultural Practices:**
 - Natural predators: parasitoid
 - wasps, green lacewings, spiders
 - o Reduce plant stress
 - Avoid overuse of insecticides
 - Pull off and destroy mined leaves
 before May in light infestations on
 small hollies
 - Sticky traps to monitor for adults
 - Destroy prematurely dropped
 leaves

Materials

- Contact insecticides:
 - Avermectins [6]: abamectin
 - Pyrethroids [3]: -thrins
 - Will only suppress adults
 - Carbamates [1A]: carbaryl
 - Will only suppress adults

Systemic insecticides

(larvae only, ~June application):

- Organophosphates [1B]: acephate
- Neonicotinoids [4A]: imidacloprid,
 dinotefuran
- Considerations:
 - o Can harm non-target species

- Biorationals:

- o Neem oil
- o Insecticidal soap
- Spinosyns [5]: spinosad

TRAPS AVAILABLE

UTGER

- Young caterpillars are dark with two thin yellow stripes on backs
- Mature caterpillars are two inches long with a white stripe and two yellow stripes on their backs, the rest of their body being blue, yellow, and black
- Cocoons are white to yellowish and are spun in dry, protected places
- Adult moths are fluffy, tan to light brown, with two white stripes on the wings
- Can cause complete defoliation, consuming all fresh buds and leaves
- Host plants: Rosaceous trees cherry, crabapple, apple
 - Occasionally other deciduous shrubs and trees Ο

Current GDD: 4/22/25 North NJ: 60 GDDs Central NJ: 120 GDDs Southern NJ: 165 GDDs

Eastern tent caterpillar (Malacosoma americanum)

GDD Window (base 50): 90-190

Overwinter as eggs, black masses that wrap around small twigs of host plants and hatch in the early spring, using web tents in the forks and crotches of branches as protection and feeding on leaves

Photo credits Steve Rettke, Rutgers RCE

Eastern tent caterpillar (Malacosoma americanum)

Current GDD: <u>4/22/25</u> North NJ: 60 GDDs Central NJ: 120 GDDs Southern NJ: 165 GDDs

RUTGERS

GDD Window (base 50): 90-190

Management

- **Cultural Practices:**
 - Natural predators: many birds,

insects, and parasitoids

- Prune out egg masses in the winter before they hatch
- Remove silk tents using a disposable object
- Do not use fire fire will cause
 more damage to the tree than
 the insect itself

Materials

- Contact insecticides:
 - Carbamates [1A]: carbaryl
 - Pyrethroids [3]: -thrins
- Systemic/translaminar

insecticides:

- Organophosphates [1B]:
 acephate
- Considerations:
 - Use with caution, can impact non-

target species

- Biorationals:

- o Horticultural oil
- o Insecticidal soap
- Spinosyns [5]: spinosad
- Microbial disruptors of insect

midgut [11]: Bacillus

thuringiensis (Bt)

- Evergreen Lace Bugs
- Clearwing Moths
- Spongy Moth

Evergreen lace bugs (Stephanitis spp.)

Azalea Lace Bug: 118 GDDs (egg hatch)

Andromeda Lace Bug: 115 GDDs (egg hatch)

Azalea lace bug eggs. Egg covered by excrement (white arrow), egg with excrement removed (blue), and egg extracted from leaf (green).

Pieris damaged by the andromeda lace bug. Photo by Alison Arnold, NC State University

Current GDD: <u>4/22/25</u> North NJ: 60 GDDs Central NJ: 120 GDDs Southern NJ: 165 GDDs

Azalea lace bug on lower surface of azalea leaf. Photo by J. R. Bake

Azalea lace bug adults in January! Photo taken in Wake County.

The andromeda lace bug can be a major pest of Japanese andromeda.

Photo by http

Photo by http://insectoid.info/bugs/lace-bugs/andromeda-lace-bug/

Evergreen lace bugs (Stephanitis spp.)

Azalea Lace Bug Symptoms

118-372 GDDs (1st gen nymphs)

Andromeda Lace Bug Symptoms

115-279 GDDs (1st gen nymphs)

Photo Credits: Steven K. Rettke, Rutgers Coop. Ext.

Drawing Credit: John Davidson

Azalea Lace Bug Overwintering Eggs GDD Window (base 50): <u>118</u> GDD (eggs hatch)

---Primary Central Leaf Vein---

Oils will not control eggs!

Current GDD: <u>4/22/25</u> North NJ: 60 GDDs Central NJ: 120 GDDs Southern NJ: 165 GDDs

Photo Credit: Robin Rosetta

Evergreen and deciduous lace bugs

Evergreen (Stephanitis genus)

Rhododendron Lace Bug

Oval-shaped wings

Deciduous (Corythuca genus)

Photo Credits: Steven K. Rettke, Rutgers Coop. Ext.

Lace Bug Signs: Adults, nymphs, & frass

Photo Credit: Steven K. Rettke, Rutgers Coop. Ext.

Evergreen or Deciduous Lace Bug Species?

Photo Credit: Steven K. Rettke, Rutgers Coop. Ext.

Evergreen lace bugs (Stephanitis spp.)

GDD Window (base 50): 115 (eggs hatch)

- Andromeda lace bug (Stephanitis takeyai) and azalea lace bug (Stephanitis pyrioides)
- Overwinter as eggs in the lower leaf veins
- Oval shaped wings with rounded corners
- Top of wings, head, and thorax are composed of many raised ridges, which give a lacelike appearance
- Adults are cream-colored with patches of black or brown
- Dark X-shaped mark on the wings
- Nymphs are tiny and much darker in color than adults, casting skins on lower leaf surfaces
- Cause foliar discoloration from sucking, reduced plant vigor, premature leaf drop, chlorosis or stippling on upper leaf surface
- Nymphs and adults can hide on underside of leaves
- Excrement on underside of leaves is black
- Damage can be more severe in sunny sites
- **Host plants**: Evergreens (andromeda, azalea, rhododendron, mountain laurel)

Adult lace bug Photo via UMass Extension

Evergreen lace bugs (Stephanitis spp.)

GDD Window (base 50): 115 (eggs hatch)

Management

- **Cultural Practices:**
 - Natural predators: green

lacewings, mites, assassin bugs

- Lacewing larvae can be released to reduce damage
- o Reduce plant stress
- Avoid planting in sunny locations
- Keep the soil beneath the plants
 bare
- Syringing

$\circ~$ Contact insecticides:

- Carbamates [1A]: carbaryl
- Pyrethroids [3]:
 permethrin, bifenthrin
- Organophosphates [1B]:
 acephate (translaminar)
- Systemic insecticides:
 - Avermectins [6]: abamectin
 - Neonicotinoids [4A]:

imidacloprid, dinotefuran

 Soil injection of imidacloprid will be effective for 1-2 years

Biorationals:

_

- o Horticultural oils
 - Will not control eggs, but can suppress nymphs and adults
- Insecticidal soaps (same as above)
- Diamides [28]: Chlorantraniliprole
- Considerations: apply to the underside of leaves

Clearwing borers

Photo credits: Steve Rettke, Rutgers RCE unless otherwise mentioned

Dogwood Clear Wing Borer: 148-700 GDDs (adults emerge)

Lilac Clear Wing Borer: 148-299 GDDs (adults emerge)

Photos: Cornell CALS

Clearwing Moth Borer Infested Tree

Photo Credit: Steven K. Rettke, Rutgers Coop. Ext.

Clearwing Moth Borer Caterpillar Larva

Photo Credit: Ohio State Coop. Ext.

Clearwing borers

CW Moth Pupation Skin

CW Moth Exit Hole

Photo Credits: Steven K. Rettke, Rutgers Coop. Ext.

Pheromone Traps to Time Treatments

GDD Window (base 50): <u>Lilac</u>: 148-299, <u>Dogwood</u>: 148-700

Pheromones for Clearwing Moths ("Wing-Trap")

Captured Male Clearwing Moths

Photo Credits: Steven K. Rettke, Rutgers Coop. Ext.

CWM's require tree wounds to lay eggs

Clearwing Moth Borer Adult

Moths that mimic the appearance of wasps

Photo Credit: Steven K. Rettke, Rutgers Coop. Ext.

Drawing Credit: Steven K. Rettke, Rutgers Coop. Ext.

Clearwing borers

GDD Window (base 50): Lilac: 148-299, Dogwood: 148-700

- Lilac clear wing borer (Podosesia syringae)
 - >1 inch long, drab black and brown in color, wings more opaque than other species.
 More common earlier in the season.
- Dogwood clear wing borer (Synanthedone scitula)
 - Smaller in size, (> ½ inch) can be trapped with pheromones, two pairs of wings that contain very few scales and are clear in appearance. Two yellow bands around the abdomen.
- Overwinter in tunnels under tree bark as larvae
- Pupate in spring, emerging as adults two weeks later
- Adults resemble wasps in both appearance and action, lay eggs in bark wounds
- Causes dying limbs, rough and gnarled bark, trunk and branch swellings, sap exudation, sawdust-like frass, brownish pupal cases emerging from the bark near the tree base Host plants:
 - Lilac Borer: ash, lilac, olive, privet trees
 - Dogwood Borer: apple, dogwood, pecan, elm, hickory, willow trees

Dogwood CWB Photo: Cornell CALS

TRAPS AVAILABLE

GDD Window (base 50): Lilac: 148-299, Dogwood: 148-700

Management

- **Cultural Practices:**
 - Natural predators: braconid wasps, nematodes (Steinemema carpocapsae, S. Feltiae)
 - Reduce plant stress (especially drought stress)
 - Whitewash to reduce light
 exposure and sunburn
 - Crush or puncture larvae to kill
 - Pheromone traps lure males to establish presence of adults, used to time contact treatments

Materials

- Contact insecticides:
 - <u>Pyrethroids</u> [3]: -thrins permethrin, bifenthrin

• Systemic insecticides:

- Macrocyclic lactones [18]:
 Emamectin benzoate
- Glycosides [6]: Abamactin
- Considerations:
 - Application of systemic insecticides have <u>not</u> been found to control clearwing moths or their larvae

- Biorationals:

- Diamides [28]:
 - Chlorantraniliprole

TRAPS AVAILABLE

Current GDD: <u>4/22/25</u> North NJ: 60 GDDs Central NJ: 120 GDDs Southern NJ: 165 GDDs

Clearwing borers

Photo credits Steve Rettke, Rutgers RCE

Spongy Moth (Lymantria dispar)

Photo: Jane Lindholm/VPR

Photo: Milan Pernek

Photo: Louis-Michel Nageleisen

Spongy Moth (~ 5th instar)

Photo Credit: Steven K. Rettke, Rutgers Coop. Ext. Hatching 1st Instar Spongy Moth Caterpillars GDD Window : 90-448

> Current GDD: <u>4/22/25</u> North NJ: 60 GDDs Central NJ: 120 GDDs Southern NJ: 165 GDDs

Photo Credit: Steven K. Rettke, Rutgers Coop. Ext.

Spongy Moth (Lymantria dispar)

150-year spread of Spongy Moth throughout the Northeastern United States

RUTGER

Current GDD: <u>4/22/25</u> North NJ: 60 GDDs Central NJ: 120 GDDs Southern NJ: 165 GDDs

Quarantine Information Source: https://www.aphis.usda.gov/aphis/maps/plant-health/european-gypsy-moth-quarantine

Minnesota Department of Agriculture - Plant Protection Division (Updated: 11/18/2020)

NJ Acres Defoliated by Spongy Moth by Year

Peak NJ defoliations occurred during the 1980's

Acres Defoliated Acres Treated

RUTGER

NJ Dept. of Agriculture

Spongy Moth Caterpillar Killing Fungus: Entomophaga miamiaga

Current GDD: <u>4/22/25</u> North NJ: 60 GDDs Central NJ: 120 GDDs Southern NJ: 165 GDDs

Photo Credit: Steven K. Rettke, Rutgers Coop. Ext.

Spongy Moth (Lymantria dispar)

GDD Window (base 50): 90-448

- Overwinter as egg masses covered in yellowish fur, 1.5 inches long and ¾ inches wide on trees, stones, walls, furniture, etc.
- Young caterpillars are black and hairy
- Older caterpillars are 2 inches long with 5 pairs of blue dots and
 6 pairs of red dots along their backs
- Male moths are brown with a darker brown pattern on their wings
- Females are white, slightly larger than the males, and have wings but
 do not fly -Adults appear two weeks after pupae
- Trees may be completely bare of leaves (3 conc. yrs of 75% defoliation will set trees up to be killed)
- Heavy infestations will look barren and wintery in the summer
- Host plants: over 300 species of trees and shrubs

Photo via Steve Rettke, Rutgers RCE

Spongy Moth (Lymantria dispar)

GDD Window (base 50): 90-448

Management

- Cultural Practices:
 - Natural Predators: Entomophaga maimaiga fungus, Nuclear polyhedrosis virus (NPV), Clostridium bacteria
 - o Report sightings to agriculture officials
 - Follow quarantine regulations
 - Crush pupae or brush it into a container
 or soapy water using a disposable object
 - Apply a trap/burlap banding or sticky banding to capture caterpillars
 - Soak egg masses in soapy water for a few days before disposing
 - Crushing eggs will not work
 - o Reduce tree stress

Contact insecticides

- Pyrethroids [3]: -thrins
 - Permethrin, bifenthrin
- Carbamates [1A]: carbaryl

Systemic insecticides:

- Neonicotinoids[4A]: acetamiprid (reduced risk)(translaminar)
- Organophosphates [1B]: acephate (translaminar)
- Diacylhydrazines [1B]:
 Diflubenzuron (IGR)

- **Biorationals:**
 - Bacillus thuringiensis (Btk)
 - Microbial disruptors of insect midgut
 - Only for populations less dense than
 1000 eggs per acre
 - Most effective when applied in the spring (1st & 2nd instars)
 - o Insecticidal soap (young instars)
 - Spinosyns [5]: spinosad (translaminar)
 - Diamides [28]: Chlorantraniliprole

Photo credits: Steve Rettke, RCE

Red-headed flea beetle (Systena frontalis)

Current GDD: <u>4/22/25</u> North NJ: 60 GDDs Central NJ: 120 GDDs Southern NJ: 165 GDDs

RUTGERS

Make sure you are targeting the right pest / disease

Anthracnose – Colletotrichum spp.

Red-headed flea beetle (Systena frontalis)

GDD Window (base 50): 242-600 (egg hatch) & 517-1028 (adults)

- Overwinter as tiny, pale yellow, oval-shaped eggs
- Grubs hatch during the second half of May
- Reddish head with shiny black thorax and abdomen
- Enlarged femur at the hind legs allows the beetle to "hop"
- 2-3 generations per season
- Feeding on thinner leaves produces skeletonized symptoms or a shredded appearance
- On thicker leaves, feeding symptoms can mimic the light-colored leaf patterns seen from leaf miners
- Host plants: Extensive host range
 - Itea, Weigela, Hydrangea, Rudbeckia, Salvia, Buddleia,
 Veronica, Coreopsis
 - Corn, soybean, potatoes, cranberries, blueberries, smartweed, jewelweed, Joe-Pye weed

Photo via Steve Rettke, RCE

Red-headed flea beetle (Systena frontalis)

GDD Window (base 50): 242-600 (egg hatch) & 517-1028 (adults)

Management

Cultural Practices:

• Natural predators: solider beetle

larvae, lacewing larvae, big-eyed bugs, damsel bugs, beneficial $^{\circ}$ nematodes, entomopathogenic fungi

- Avoid placing susceptible plants in the same area year after year
- Avoid placing new crop next to 'holdovers' from previous season
- Systemic applications 3-4wk prior to
 1st generation adults is effective

Materials

- Contact insecticides:
 - Pyrethroids [3]: -thrins
 - Carbamates [1A]: carbaryl
 - o METI [21A]: Tolfenpyrad

Translaminar systemics:

- Organophosphates [1B] Acephate
- Diamides
 [28]: Cyclaniliprole, + Flonicamid [29]

<mark>Systemic insecticides:</mark>

- <u>Neonicotinoids [4A]: imidacloprid</u>, dinotefuran
- o Diamides [28] (see biorationals)

• Considerations:

- Apply systemic 3-4wk prior to adult emergence (Adults = 517 GDD50)
- Knock-down contact insecticides will harm non-target species, and will require regular applications

- Biorationals:

- Horticultural oil
- Insecticidal soaps
- Azadirachtin [UN] larval

RUTGERS

treatments

- o Diamides [28]:
 - Cyantraniliprole
 - Chlorantraniliprole

Red-headed flea beetle (Systena frontalis)

GDD Window (base 50): 242-600 (egg hatch) & 517-1028 (adults)

SOUTH

CENTRAL

	Date	DDs cumu	Events	Date	DDs cumu	Events	Date	DDs cumu	Events
	Jan 1	0	* START *	Jan 1	0	* START *	Jan 1	0	* START *
	Apr 17	107	* NOW *	Apr 17	71	* NOW *	Apr 17	43	* NOW *
Systemic Target	May 2	243	Start Egg hatch and larvae gen one	May 12	251	Start Egg hatch and larvae	May 22	253	Start Egg hatch and larvae gen one
Adult / Contacts	May 23	522	Start Adult feeding gen one	Jun 1	520	Start Adult feeding gen one	Jun 10	524	Start Adult feeding gen one
	May 28	609	END Egg hatch and larvae gen one	Jun 6	611	END Egg hatch and larvae gen one	Jun 15	611	END Egg hatch and larvae gen one
	Jun 17	1042	END Adult feeding gen one	Jun 26	1042	END Adult feeding gen one	Jul 6	1045	END Adult feeding gen one
	Jul 7	1582	Start Egg hatch and larvae gen two	Jul 17	1597	Start Egg hatch and larvae gen two	Jul 29	1585	Start Egg natch and larvae gen two

Systemic insecticide applications 3-4wk prior to 1st generation adults is effective in heavy infestations:

- Neonicotinoids [4A]: imidacloprid, dinotefuran
- **Diamides [28]:** Cyantraniliprole, Chlorantraniliprole

Gymnosporangium spp. rust diseases

Photo credits: Rutgers PDL

Photo credits: John Hartman, University of Kentucky

Gymnosporangium spp. rust diseases

Cedar-Apple Rust: G. juniperi-virginianae

Cedar-Hawthorn Rust: G. globosum

Cedar-Quince Rust: G. Clavipes

- Found on Juniperus host late fall through early spring
- Found on **Rosaceous hosts early spring** through late fall
- Produce two or more types of spores during the growing season
- Cannot grow in absence of a living host
- Spores are found in "rusty" aecia/ aecial projections (yellow, orange, and brown) pustules on leaves, distorted stems, and fruit
- Impacts aesthetic appeal / plant vigor

Gymnosporangium spp. rust diseases

Management

Cultural Practices:

- Reduce humidity and leaf wetness
 - Avoid overhead irrigation
 - Space plants to lower humidity
 - Use fans and winds
- Use resistant plant materials
- Frequent scouting and purchasing disease-free plants
- o Remove the alternate host
- Sanitation
 - Remove infected leaves and debris
 - Discard or isolate infected plants
- Reduce plant stress
- o Reduce shade

Materials

- Protectant Fungicides
 - Chloronitriles [M05]:
 Chlorothalonil
 - Dithiocarbamates [M03]: Mancozeb, Maneb

• Systemic Fungicides

- {DMI} Triazoles [3]:
 Myclobutanil, Propiconazole,
 Triadimefon, Imidazole
- Thiophanate methyl [M1]

Considerations:

Qol - [11] fungicides can cause phytotoxicity to some Malus / Crataegus varieties. Check label before use. Trial small area first

- Biorationals:
 - Bacillus amyloliquefaciens strain D747*
 - Bacillus pumilus
 - Bacillus subtilis
 - Reynoutria sachalinensis
 - Swinglea glutinosa
 - Streptomyces lydicus

Fireblight (Erwinia amylovora)

Photo: Steven Rettke, RCE

Photo: UMN Extension

Photos: UMN Extension

Dhoto: UMN Extension

Fireblight (*Erwinia amylovora*)

- Caused by bacteria Erwinia amylovora
- Onset in the spring as bacterial cells ooze in a yellow-amber liquid from existing cankers on infected plants
- Bacteria spread to flowers, leaves, fruit, and stems by insects, wind, rain, or pruning equipment
- Bacteria penetrates through pruning wounds and natural openings such as stomates and nectaries
- Thrives in warm, wet weather in the spring
- Twigs and branches die rapidly and appear scorched
- Tender shoots droop and bend as they die, causing "shepherd's crook"
- Cankers later form at the base of branches, and susceptible plants die
- Host plants: *Rosaceae* family apple, crabapple, cotoneaster, hawthorn, mountain ash, pyracantha, pear
 - \circ $\,$ Highly associated with host bloom period per crop

Fireblight (Erwinia amylovora)

Management

- Cultural Practices:
 - Improve plant vigor, but avoid heavy spring fertilization that can promote succulent growth
 - In late summer (when oozing no longer occurs), prune diseased
 wood 6-8 inches below the infection, sterilizing the tools
 between cuts
 - Remove waterspouts
 - Dispose of infected plant material
 - Replace susceptible varieties with resistant ones

Materials

Contact bactericides:

- Copper [M01]: cuprous
 oxide, copper hydroxide,
 copper sulfate
- Phosphonates
 - [P07]: fosetyl-Al
- Streptomycin sulfate [25]
- Considerations: Do not

 apply group [P07] and copper based [M01] fungicides within 14d
 of one another, as phytotoxicity is
 likely to occur! Rotation is critical
 to avoid resistance.

Fire Blight

NEWA is a partnership of <u>New York State Integrated Pest Management</u> , <u>Northeast Regional Climate Center</u> , and <u>Rutgers</u> , <u>The State University of New Jersey</u> Management Guide												
CYCLE	MANAGEMENT											
	Blossom blight risk predictions begin at first blossom open. If bloom in your orchard has not yet occurred, continue to check fire blight risk predictions and monitor bloom daily. Infection cannot occur without open blossoms.											
Blossom blight	Most serious fire blight epidemics begin with infection during bloom. Certain antibiotics can effectively protect against blossom infections when applied shortly before or immediately after they occur. The Cougarblight and Infection Potential risk levels are based on the principle that											
	 a certain number of heat units must accumulate during bloom for a threshold level of inoculum to be reached; a wetting event is necessary after this point to wash the bacteria to their infection sites; and the average temperature is above 60F. 											
	Marginal or Low risk If none of these conditions is met during bloom, risk is 'Marginal' or 'Low' and bactericides are not needed.											
	Moderate risk	Infection Potential EIP risk is 'Moderate' and it is advisable to watch the forecast closely for continuing warm weather and rain.										
	High risk If two conditions are met during bloom, risk is 'High' and forecasted wetting events should be carefully considered bactericide applied just before (or after) a rain.											
	Extreme or Infection risk	If all three conditions are met, risk is 'Extreme' or 'Infection' and an antibiotic should be applied just before (or after) a rain.										
Daily Couga	arblight Risk	ی Download PNG Risk Level: Low Caution High Extreme										
450 - 300 - 2025-04	, 01 2075 04.04 207	15.04.07 2025.04.10 2025.04.13 2025.04.19 2025.04.72 2025.04.72										

Traps: First Come, First Serve - Sign-up

Sticky cards

Wing & Delta traps + Pheromones

Example uses:

- Aphids
- Leaf miners
- Leaf hoppers

Example uses:

- Clearwing Borers IMPORTANT NOW
- + Dogwood Borer lures
- + More generic clearwing lures
- Box Tree Moth

We are excited to work with everyone in determining what IPM tools we need now / in the future in NJ – *Please contact us!* (Trap supplies currently only for commercial growers)

Sticky tapes

(wht/blk/foam)

Example uses:

- Scale crawlers
- Mealybugs

Thank you for attending

Presentation will be available on our website.

Next session: May 13, 2025

Key pests for next time:

- Pine needle scale
- Cryptomeria scale
- Elongate hemlock scale
- Oystershell scale
- Boxwood mites
- Boxwood psyllid

- Hemlock woolly adelgid
- Red headed pine sawfly
- Horned and gouty oak galls
- Hawthorn lace bug
- Scale monitoring with

double sided tape

Volutella Blight

- Oomycetes
 - Pythium in nurseries
 - Phytophthora in conifers

USDA National Institute of Food and Agriculture

Implementation of IPM in New Jersey -Ornamental Crops 2025

Use the Rutgers Plant Diagnostic Lab

Enables us to learn more about specific issues

Rutgers Plant Diagnostic Laboratory Ralph Geiger Turfgrass Education Center 20 Indyk-Engel Way New Brunswick, NJ 08901

Telephone: 732-932-9140 Fax: 732-932-1270 Email: <u>rutgerspdl@njaes.rutgers.edu</u>

RUTGERS UNIVERSITY **Agriculture and Natural Resources New Jersey Agricultural Experiment Station**

HTTPS://PLANT-PEST-ADVISORY.RUTGERS.EDU/

Cooperating Agencies: Rutgers, The State University of New Jersey, U.S. Department of Agriculture, and Boards of County Commissioners, Rutgers Cooperative Extension, a unit of the Rutgers New Jersey Agricultural Experiment Station, is an equal opportunity program provider and employer

New Jersey Agricultural **Experiment Station**

Beta-version 2023 Contact: twaller@njaes.Rutgers.edu

Nursery & Landscape Pest Scouting Scouting with growing degree-days

Rutgers Green Industry Working Group Contact: Timothy Waller, Ph.D. twaller@njaes.Rutgers.edu

